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The ‘almost-highest wave’, which is the asymptotic form of the flow in a steep
irrotational water wave of less than the limiting height, was recently shown to be
unstable to infinitesimal disturbances (see Longuet-Higgins & Cleaver 1994). It was
also shown numerically that the lowest eigenfrequency is asymptotic to that of the
lower superharmonic instability of a progressive wave in deep water (Longuet-Higgins,
Cleaver & Fox 1994). In the present paper these calculations are revised, indicating the
presence of more than one such instability, in agreement with recent calculations on
steep periodic and solitary waves (Longuet-Higgins & Tanaka 1997).

The nonlinear development of the fastest-growing instability is also traced by a
boundary-integral time-stepping method and the initial, linear growth rate is
confirmed. The subsequent, nonlinear stages of growth depend as expected on the sign
of the initial perturbation. Perturbations of one sign lead to the familiar overturning
of the wave crest. Perturbations of the opposite sign lead to a smooth transition of the
wave to a lower progressive wave having nearly the same total energy, followed by a
return to a wave of almost the initial wave height. This appears to be the beginning of
a nonlinear recurrence phenomenon.

1. Introduction

In a recent paper (Longuet-Higgins & Cleaver 1994) it was shown that the local flow
near the crest of a steep, progressive gravity wave on water is itself subject to an
exponentially growing instability. To distinguish it from instabilities involving the
whole wave, this was called a ‘crest instability ’. In a second paper (Longuet-Higgins,
Cleaver & Fox 1994) it was further shown numerically that the crest instability is the
asymptotic form of the lowest superharmonic instability of a complete, periodic gravity
wave in deep water when the wave steepness ak tends to its limiting value
(ak)

max
¯ 0±4423. As shown by Tanaka (1983) this instability first occurs when

ak¯ 0±4292, the value at which the total energy E attains its first maximum (see also
Saffman 1985). For solitary waves, a parallel result was demonstrated numerically by
Tanaka (1986).

In the above work all of the calculations, whether analytic or purely numerical, were
carried out on the basis of linear perturbation theory, and the departures from a
steady, nonlinear wave were assumed infinitesimally small. An interesting paper by
Tanaka et al. (1987) traced the subsequent nonlinear development of the fastest-
growing instability for the solitary wave by numerical time stepping. Depending on the
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sign of the initial perturbation, it either developed into a plunging breaker or else
underwent a smooth transition to a solitary wave of lower amplitude and nearly the
same total energy. A similar investigation for periodic waves in deep water was
attempted by Jillians (1988) with partial success (see below). Meanwhile the general
interest in the subject has intensified owing to its relevance to wave breaking and
turbulent mixing in the uppermost layer of the ocean, and to the microstructure of the
sea surface.

The purpose of the present paper is twofold. First we revise and extend the linear
stability calculations on deep-water waves reported in Longuet-Higgins & Cleaver
(1994) and Longuet-Higgins et al. (1994). The need for such revision was prompted by
a recent independent investigation by Tanaka (1995), undertaken at the request of one
of us (M.S.L.-H.).† Our results are described in §3 below.

Our second and main purpose in this paper is to follow by numerical time stepping
the nonlinear development of the fastest-growing crest instability of a periodic wave.
The approach adopted is slightly different from that of Tanaka et al. (1987) or Jillians
(1988). Those authors used as initial values for the time stepping a numerically
determined normal-mode instability for the complete wave. Here we use instead the
lowest crest instability, as calculated in the present paper.

The nonlinear calculation is described in general terms in §4, and the results are
given in §5. As expected, the nonlinear development of the instability depends crucially
on the sign of the initial (linear) perturbation. A perturbation of positive sign leads on
to overturning of the wave crest in the familiar manner (see figure 9). One might have
expected a perturbation of negative sign to lead initially to a wave crest with a slight
concavity on the forward face but this is not the case. Instead the wave undergoes a
smooth transition to a periodic wave of lower amplitude and then returns to a wave
of almost the same amplitude, in a kind of recurrence phenomenon. Thus the
behaviour is similar to that of the crest instability of a solitary wave, except that for
a solitary wave the period of recurrence is infinite.

2. Initial conditions: linear perturbation theory

In the theory of the almost-highest wave (Longuet-Higgins & Fox 1977, 1978) the
flow near the crest of a steep, irrotational gravity wave is characterized by the
horizontal particle velocity q at the crest of the wave, as seen in a reference frame
moving horizontally with the phase speed. Together with gravity g this defines a
characteristic length scale

l¯ q#}2g (2.1)
and a small parameter

ε#¯ q#}2c#
!

(2.2)

where c
!

is the linear phase speed given by

c#
!
¯ g}k¯ gL}2π, (2.3)

k and L being the wavenumber and wavelength.
The limiting form of the wave crest as εU 0 was determined by Longuet-Higgins &

Fox (1977) and is shown in figure 7 of that paper. If axes of x and y are chosen as
horizontal (opposite to the direction of propagation) and vertically upwards, then we
can define

z¯ y®ix, χ¯φiψ, (2.4)

† The details of Tanaka’s calculations and an analysis of the results are given in the paper by
Longuet-Higgins & Tanaka (1997).
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where φ and ψ are the velocity potential and streamfunction. For large values of z we
have

zC 0$# iχ1#/$ as rχrU¢, ψ% 0, (2.5)

corresponding to Stokes’s 120° corner flow. Generally, the unperturbed flow is
expressed as a series

z¯ (δiχ)#/$B(ω), B¯ 3
¢

n=!

B
n
ωn, (2.6)

where ω¯
δ®iχ

δiχ
(2.7)

and δ is a constant at our disposal (δ was taken to be 10$/#). The series (2.6) is assumed
to converge inside and on the circle rωr¯ 1 which corresponds to the unperturbed free
surface. By applying suitable conditions on the boundary, the coefficients B

!
,B

"
,… ,B

*!
were determined to a high degree of accuracy.

The normal-mode perturbations of this flow were calculated in Longuet-Higgins &
Cleaver (1994). We write

z¯Zζ, (2.8)

where Z is the previously determined flow, given by equation (2.6) and ζ is a small
perturbation. The free surface is defined by ψ¯F(φ, t) and only terms linear in ζ and
F are retained. The kinematic and dynamical boundary conditions combined then lead
to a single (complex) condition to be satisfied on ψ¯ 0. The perturbations ζ and F are
expanded in series :

ζ¯ 3
¢

n=!

(b
n
ia

n
)ωn,

F¯ 3
¢

n="

(c
n
cos nτd

n
sin nτ),

5

6

7

8

(2.9)

where eiτ ¯ω and the coefficients a
n
, b

n
, c

n
, d

n
depend on the time t only. Assuming a

time dependence eβt and equating coefficients of cos nτ and sin nτ in the boundary
conditions as far as n¯N, say, one is led to a set of (4N2) simultaneous linear
equations for the vector

x¯ (a
!
, a

"
,… , a

N
; b

!
, b

"
,… , b

N
; c

"
,… , c

N
; d

"
,… , d

N
) (2.10)

in the form
βAx¯Bx (2.11)

where A and B are matrices of order (4N2). The numerical solution of these
equations, for a sufficiently large value of the truncation parameter N, then yields the
required set of eigenvectors β and the corresponding eigenvector x, which in turn yields
a normal-mode perturbation. There is always one mode in which β¯ 0, a

!
1 0 and all

the other coefficients a
n

vanish. This solution corresponds to a perturbation consisting
of a pure phase shift. In Longuet-Higgins et al. (1994), the results of Longuet-Higgins
& Cleaver (1994) for vanishingly small ε were extended to positive values of ε by
matching the ‘ inner ’ solution for the flow near the crest (that is to say when z¯O(ε#)),
to an ‘outer ’ flow representing the rest of the wave. The matching process requires a
modification to the inner flow by an amount of order ε$(λ−"), where λ is the lowest
positive root of

πλ

2
tan

πλ

2
¯®

π

2o3
, (2.12)
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hence λ¯ 1±8027. Once the modification is made, the calculation of the normal-mode
perturbations to this flow can be carried out as before.

3. Results of the linear perturbation analysis

In Longuet-Higgins & Cleaver (1994), equations (2.5) were solved numerically for
N% 50, using a standard  subroutine  which unfortunately developed
significant errors, when N exceeded about 20. These were only later detected. We have
now used a more robust routine which simply determines the sign of the determinant

D(β)3 sβA®Bs. (3.1)

Hence the zeros of D(β) could be found by a straightforward bracketing technique.
The largest positive eigenvalue β

"
determined by this method is shown in table 1 for

N¯ 60(2) 80 in the column under ε¯ 0. It appears to be converging to a value near

β
"
¯ 0±0434. (3.2)

This differs significantly from the value 0±0544 in table 1 of Longuet-Higgins &
Cleaver, but is close to the value (0±0435) found by Cleaver in his PhD dissertation
(Cleaver 1981), obtained by the use of a Shanks transform.

The remaining columns of table 1 show the corresponding values of β
"

when
ε¯ 0±02(0±02) 0±14. When ε" 0±15 convergence is difficult to obtain. All the values of
β
"

at N¯ 80 are plotted against ε in figure 1. It will be seen that β
"

decreases
monotonically with ε.

From equation (2.9) we should expect small departures of β
"
from its value at ε¯ 0

to vary as ε$(λ−"). In figure 1 we show the curve

β
"
¯ 0±0434®Cε$(λ−"), (3.3)

where C¯ 0±046 is an empirically determined constant.
The calculations also suggested the presence of a second positive zero of D(β) at

around 0±01; see table 2. This implies a second exponentially growing mode, as was
found also by Tanaka (1995).

For periodic waves on deep water, the parameter ε is related to the wave steepness
ak by the formula

ak¯ 0±4432®0±5ε#®0±160ε$ cos (2±143 ln ε®1±54) (3.4)

(see Longuet-Higgins & Fox 1978, equation (5.4)), so that we may plot the scaled
growth rate (β

n
}ε) against ak. Thus figure 2 shows β

n
}ε plotted against ak and

compared with the growth rates λ
n

as calculated by Tanaka (1995) for steep periodic
waves of less than the limiting steepness. Although Tanaka’s calculations were not
carried beyond about ak¯ 0±4424 it is clear that the values of λ or β

"
derived from the

theory of the almost-highest wave do indeed form a satisfactory asymptote to Tanaka’s
values. Figures 1 and 2 should be regarded as superseding figures 4 and 5 of Longuet-
Higgins et al. (1994).

A more stringent comparison is made in figure 3, which shows the squared
eigenvalues β#

n
compared to Tanaka’s scaled eigenvalues, as a function of ε¯ q}o2c

!
.

In particular the limiting value β#

"
¯ 0±00188 is a good match to Tanaka’s calculations.

After determining the eigenfrequencies β
n
, the calculation of the eigenfunctions was

carried out by setting a
!
or a

"
equal to 1 and then solving all but one of equations (2.9)
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F 1. The positive growth rate β
"

of the lowest crest instability, plotted against ε. The broken
curve represents the asymptotic formula (3.3).

Ncε 0±00 0±02 0±04 0±06 0±08 0±10 0±12 0±14

60 0±04325 0±04320 0±04299 0±04251 0±04167 0±04020 0±03749 0±03224
62 0±04327 0±04323 0±04301 0±04254 0±04168 0±04016 0±03737 0±03199
64 0±04330 0±04325 0±04304 0±04256 0±04169 0±04012 0±03725 0±03175
66 0±04332 0±04328 0±04306 0±04258 0±04169 0±04008 0±03714 0±03153
68 0±04334 0±04330 0±04308 0±04260 0±04169 0±04004 0±03702 0±03134
70 0±04336 0±04331 0±04310 0±04261 0±04169 0±04000 0±03691 0±03116
72 0±04337 0±04333 0±04311 0±04262 0±04168 0±03996 0±03681 0±03101
74 0±04339 0±04334 0±04313 0±04263 0±04168 0±03991 0±03671 0±03089
76 0±04340 0±04335 0±04314 0±04264 0±04167 0±03987 0±03661 0±03081
78 0±04340 0±04336 0±04314 0±04264 0±04165 0±03982 0±03652 0±03078
80 0±04340 0±04336 0±04315 0±04264 0±04164 0±03978 0±03645 0±03079

T 1. Calculated values of the growth rate β
"

for the remaining coefficients. This yields ζ(φ,ψ) and F(φ) by equations (2.7). However,
since the free surface is given by ψ¯F, not ψ¯ 0, we have for the surface profile to
calculate

y¯Y(φ, 0)9F(φ)
¥Y
¥ψ

(φ, 0)η(φ, 0): εβt. (3.5)

We write this as
y¯Yα∆y eβt, (3.6)
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F 2. Growth rates λ
n

of the two lowest superharmonic instabilities of steep periodic waves, as
calculated by Tanaka (1995) (crosses). The circles are values of β

n
}ε from figure 1 of this paper.

Ncε 0±00 0±02 0±04 0±06

60 0±00731 0±00758 0±00838 0±00873
62 0±00763 0±00787 0±00858 0±00878
64 0±00790 0±00812 0±00875 0±00881
66 0±00814 0±00834 0±00889 0±00883
68 0±00835 0±00853 0±00902 0±00884
70 0±00853 0±00869 0±00912 0±00883
72 0±00869 0±00884 0±00921 0±00882
74 0±00883 0±00897 0±00929 0±00880
76 0±00895 0±00908 0±00935 0±00878
78 0±00906 0±00917 0±00941 0±00874
80 0±00915 0±00926 0±00945 0±00870

T 2. Calculated values of β
#

where ∆y denotes the expression in square brackets on the right of (3.5), normalized
so that

max r∆yr¯ 1. (3.7)

Essentially ∆y gives the form of the perturbation. In figure 4, ∆y is plotted against the
unperturbed coordinate x}l with φ as parameter. The curves are shown for ε¯ 0 and
0±08. Each curve has a relatively sharp maximum when x! 0 (on the forward face of
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F 3. Graph of β#
n

(circles, this paper) and (ελ
n
)# (crosses, Tanaka 1995) against ε.

the wave) and a less pronounced minimum on the rear face. There is little difference
between the curves, however.

Figure 5 shows a comparison of the eigenfunction corresponding to ε¯ 0±08 with
Tanaka’s calculated eigenfunction when ω¯ 0±92 (ε¯ q}o2c

!
¯ 0±07533). The curves

are similar but by no means identical. It should be remembered, however, that the
eigenfunction corresponding to ε¯ 0±08 is that of the inner solution, which is valid
over a distance x¯O(ε#) only. For any non-zero value of ε there has to be a matching
zone of width O(ε) where the solution differs from the solution in the inner zone by a
proportional difference which is O(1). In the region where x}ε# is about 10, say, x}ε is
about 0±8 so that some significant differences are to be expected.

4. Nonlinear stage of growth; method of calculation

To investigate the nonlinear growth of the instability we use a boundary-integral
technique for numerical time stepping, essentially similar to that pioneered by
Longuet-Higgins & Cokelet (1976) but in the modified form due to Vinje & Brevig
(1981). The problem is formulated as finding the irrotational flow of a homogeneous,
incompressible and inviscid fluid with a free surface and in infinite depth. If φ(x, y, t)
and ψ(x, y, t) denote the velocity potential and streamfunction, and t the time, then φ
and ψ are both solutions of Laplace’s equation and we may write

χ(z, t)¯φiψ, z¯xiy (4.1)
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F 4. Vertical displacement ∆y of the free surface plotted against the scaled horizontal
coordinate x in the cases ε¯ 0 and 0±08. The wave travels to the left.

so that χ is an analytic function of z. At the free surface then the kinematic condition
can be written

Dz

Dt
¯ 0dχ

dz1
$

, (4.2)

where D}Dt denotes (¥}¥t¡φ[¡) and a star denotes the complex conjugate. The
condition of constant pressure can be written

Dφ

Dt
¯®gy

1

2 )
dχ

dz)
#

, (4.3)

where g denotes gravity. We shall take g¯ 1 and also in this application the
wavelength L¯ 1. The mapping w¯ exp (®2πiz) maps one wavelength onto the
interior of a closed contour C(t) in the w-plane, and we may apply Cauchy’s theorem

χ(w, t)¯
1

2πi&
C

χ(w«, t)
w«®w

dw« (4.4)

to any point w inside C. On letting ω approach C we obtain an integral equation
for χ.



Crest instabilities of gra�ity wa�es. Part 3 41

1

0

–1
–50 0 50

x/ε2

Dy

F 5. Comparison of the lowest normal-mode instability of the almost-highest wave when
ε¯ 0±08 (solid curve) with the lowest instability of a periodic wave when ε¯ 0±0753 (dashed curve).

At any instant t, the boundary conditions (4.2) and (4.3) provide new values of the
coordinates z and velocity potential φ on C at the time (tdt). Then a discretized form
of (4.4) is used to find the unknown streamfunction ψ on C. On C, piecewise-linear
functions are used to represent φ and ψ ; the resulting influence coefficients are as given
in Vinje & Brevig (1981). To advance in time we use a fourth-order Runge–Kutta
scheme. In order to prevent the growth of saw-tooth instabilities, five-point smoothing
and re-gridding was applied after every ten time steps.

As a check on the accuracy of the method we first applied it to a steep Stokes wave
with steepness parameter

ak¯ 0±43982. (4.5)

Here 2a denotes the crest-to-trough wave height and k¯ 2π}L is the wavenumber.
(This corresponds to H}L¯ 0±14.) The wave profile was found by expanding the
surface elevation and velocity potential in Fourier series with 4000 terms, and adjusting
the coefficients so as to satisfy boundary conditions (for steady flow) at 4000 equally
spaced grid points on the surface. To proceed with the time stepping, we used 2000
unequally spaced points ; near the wave crest the spacing was reduced to provide better
resolution. The smallest spacing ∆x was 0±61¬10−% at the crest and 0±43¬10−$ in the
trough.

A measure of the numerical error in the Bernoulli equation is provided by the
expression

rBη"

#
(¡φ)#cφ

x
r

rBrrηr"

#
(¡φ)#crφ

x
r

(4.6)

which was found to be less than 3¬10−&. (Here B is the Bernoulli constant, the mean
level being taken as zero.)
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A further check was on the phase speed. According to the asymptotic theory of the
almost-highest wave (Longuet-Higgins & Fox 1978), the speed c and steepness ak are
related by equation (3.4) and

c#}c#
!
¯ 1±1931®1±18 ε$ cos (2±143 ln ε2±22), (4.7)

where ε is a small parameter defined by equation (2.2), q being the particle speed at the
wave crest and c

!
the speed of linear gravity waves (c#

!
¯ 2πg}L). From the initial

profile we determine that q}c
!
¯ 0±12002 and so ε¯ 0±084866. Equations (3.4) and

(4.7) then yield ak¯ 0±43966 and c¯ 0±43589 respectively, in good agreement with our
numerically determined values ; the numerically calculated speed was 0±43589c

!
.

5. Growth of normal instabilities : results

As initial condition for the normal instability at time t¯ 0 we add to the
unperturbed wave profile a perturbation α∆y where α is a small parameter and

∆y¯ ε#(ηFYψ)x=!
, (5.1)

see (3.6) and (3.7). The velocity potential φ in §4 is related to the potential φ« in §§2 and
3 by φ¯φ«®cx. Hence the perturbation in φ is given by

∆φ¯®ε$cξ. (5.2)

The two perturbations ∆y and ∆φ can be given as functions of the unscaled coordinate

x¯ ε#X (5.3)
in the linearized approximation.

In addition, since the wavelength in §4 is taken as unity (not 2π), ∆y, ∆φ and x must
be rescaled by multiplying by factors (2π)−", (2π)$/# and (2π)−" respectively.

Figures 6(a) and 6(b) show the graphs of the initial perturbations α∆y and α∆φ to
be added to the profile and velocity potential of the steady wave, when α¯ 1. These
correspond to ε¯ 0±08194, almost the same as in §4. The results, as we shall see,
depend crucially on the sign of α. Figure 7 shows the initial development of the
perturbation when α¯ 0±2 (a ‘positive’ perturbation). Each curve represents the
difference between the perturbed and the unperturbed surface elevation, seen in a
stationary reference frame. After an initial adjustment in which the amplitude
diminishes, the perturbation settles down to a steady rate of growth. This is illustrated
also in figure 8, where the total range of the perturbation (i.e. the difference between
the maximum and minimum elevation) is plotted versus the time t (crosses) up to
t¯ 3±5. The dashed line shows the theoretical linear growth rate. It appears that
nonlinearity affects the growth rate significantly after about t¯ 1±5. The initial period
of adjustment may be due to the fact that the calculated eigenfunctions refer to the
‘ inner ’ solution of the almost-highest wave, which is valid only within a distance O(ε#)
from the crest, and hence do not perfectly match the eigenfunctions for the whole wave.
(The non-matching part of the initial perturbation is presumably resolved into
eigenfunctions which either decay or grow less rapidly.)

The development of the complete surface profile is shown in figure 9, in the travelling
reference frame. The wave clearly curls over and breaks in a characteristic way, similar
to that in a solitary wave; see Tanaka et al. (1987, figure 5). Breaking may be said to
occur when the surface profile develops a sharp corner at around t¯ 2±0.
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F 6. Form of the initial perturbations when α¯ 1, as functions of the unscaled horizontal
coordinate x : (a) ∆y, (b) ∆φ.
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F 7. Initial development of the positive perturbation, when α¯ 0±2, in a moving
reference frame.

The development of the negati�e perturbation corresponding to α¯®0±2 is more
interesting and is shown first in figure 10. After a similar initial period of adjustment
the perturbation grows exponentially, as expected; see the plotted points (squares) in
figure 8. The departures from the linear growth rate are of similar magnitude, but
opposite sign, to the positive perturbation.

With the negative perturbation, however, the surface profile remains convex and
rounded, as seen in figure 11. By analogy with the solitary wave (Tanaka et al. 1987)
we would expect the initial perturbed curve to undergo a transition to a lower wave of
the same total energy E as the original. From the asymptotic formulae for the potential
and kinetic energies given in Longuet-Higgins & Fox (1978) we find for the total energy
density (TV )

E¯ 0±07286®0±383 ε$ cos (2±143 ln ε1±59). (5.4)

Figure 12 shows E as a function of the wave steepness ak. Thus the initial wave, for
which ak¯ 0±4398 and ε¯ 0±08487, has an energy E¯ 0±07306, which is the same as
that of a lower wave with ε¯ 0±2239 and hence ak¯ 0±4182 (H}L¯ 0±1331).

The actual long-term development of the negative instability is shown in figures 13
and 14. Figure 13 shows the crest-to-trough wave height 2a as a function of the time,
and figure 14 shows the phase difference, as measured by the position of the maximum
elevation of the crest. From figure 13 it appears there is indeed a transition to a lower
wave of height 0±1303, approximately as expected, but that the wave then returns
almost to the original height, in a kind of recurrence, and then oscillates. The difference
in phase speed relative to the original wave may be measured by the gradient of the
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F 8. Range of the perturbations as a function of the time t. Positive and negative
perturbations (α¯³0±2) are marked by crosses and square plots, respectively.
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F 9. Development of the surface profile after the positive perturbation (α¯ 0±2) at time intervals
∆t¯ 0±05, as seen in a reference frame moving with the phase speed of the unperturbed wave.
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F 10. Development of the negative perturbation, when α¯®0±2, in the moving reference
frame of figure 9.
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F 11. Development of the surface profile after the negative perturbation (α¯®0±2) at time
intervals ∆t¯ 0±2, as seen in the moving reference frame.

curve in figure 14. The maximum gradient corresponds to a difference ∆c¯ 0±0016
hence (2π)}"/#∆c¯®0±0040 and this does agree roughly with the difference in speeds

∆c¯ c
"
®c

#
¯®0±0037, (5.5)

see table 3. However, in figure 14 the maximum phase-speed difference is at around
t¯ 5, which is not when the wave has its minimum amplitude. Also there is an interval
of time near t¯ 8 where ∆c is apparently negative. Thus the phenomenon is less simple
than it appears at first.
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F 12. The total energy E and the phase speed c as functions of the wave steepness ak.
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F 13. Crest-to-trough height of the perturbed wave, as a function of the time t.

Figure 15 shows the complete surface profiles at times t¯ 0, 8±4 and 16±0, the vertical
scale being exaggerated. The recurrent character of the transition is clearly different
from the corresponding behaviour in the case of the solitary wave (Tanaka et al. 1987)
where the wave height tends to its lower value exponentially in time. As a check on the
accuracy of the numerical time stepping in figures 13 and 14, we note that the total
energy at time t¯ 19±6 was 1±85022¬10−$ compared with the initial energy
1±85031¬10−$ at time t¯ 0, a proportional difference of less than 5¬10−&.
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F 14. Phase of the perturbed wave, as a function of the time t.
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F 15. Surface profiles at times t¯ 0, 8±4 and 16±0. The vertical scale is enlarged.

ε ak H}L E c}c
!

0±08487 0±43982 0±1400 0±07306 1±09262
0±22400 0±41818 0±1331 0±07306 1±08894

T 3. Comparison of wave parameters

6. Discussion and conclusions

Previous calculations of the normal-mode instabilities of the ‘almost-highest wave’
have been revised. The rate of growth of the fastest-growing mode agrees well with
recent calculations by Tanaka (1995) (see Longuet-Higgins & Tanaka 1997) and
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provides an asymptote for them as the crest parameter ε¯ qo2c
!
tends to zero. The

limiting form of the lowest normal-mode instability is as close as can be expected to
that computed by Tanaka for ε¯ 0±0753 (the smallest value of ε for which he made
calculations).

Time stepping of the initially perturbated wave by a boundary-integral method has
shown that the subsequent development of the instability at first follows the linear
theory faithfully. The subsequent nonlinear stages of growth depend crucially on the
sign of the initial perturbation. ‘Positive’ perturbations lead to overturning of the wave
crest ; ‘negative ’ perturbations lead on to a transition of the wave to an almost steady
wave of lower amplitude, followed by a kind of recurrence, the wave returning very
nearly to its initial height and speed.

This behaviour differs from that found for the solitary wave by Tanaka et al. (1987),
where a negative perturbation led to a monatonic transition to a lower solitary wave.
It might be considered that in that case the period of recurrence was infinitely long.

Our results also differ from those of Jillians (1989) who did not report recurrence,
possibly owing to his use of a larger initial perturbation.

Finally it must be emphasized that the type of motion considered in the present
paper is purely irrotational flow without surface tension or viscosity. Especially in the
case of the positive perturbation, surface tension can be expected to have important
effects on the ‘ jet ’ of the overturning breaker, particularly when the wavelength L is
less than about 2 m, and may prevent it from plunging altogether; see Duncan et al.
(1994). At a later stage in the process, vorticity can be introduced by viscous
dissipation, leading to a capillary roller (Longuet-Higgins 1992). These effects are at
present under investigation.

By arrangement with Professor Peregrine, M. Jervis has applied the perturbations
shown in our figure 6 to steep solitary waves, obtaining results similar to those
described by Tanaka et al. (1987). M.S.L.-H. is supported by the Office of Naval
Research under Contract N00014-91-J-1582 and D.G.D. under Contract N00014-93-
C-0046.
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